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Abstract

This paper presents an end-to-end differentiable algo-
rithm for robust and detail-preserving surface normal es-
timation on unstructured point-clouds. We utilize graph
neural networks to iteratively parameterize an adaptive
anisotropic kernel that produces point weights for weighted
least-squares plane fitting in local neighborhoods. The ap-
proach retains the interpretability and efficiency of tradi-
tional sequential plane fitting while benefiting from adapta-
tion to data set statistics through deep learning. This results
in a state-of-the-art surface normal estimator that is ro-
bust to noise, outliers and point density variation, preserves
sharp features through anisotropic kernels and equivari-
ance through a local quaternion-based spatial transformer.
Contrary to previous deep learning methods, the proposed
approach does not require any hand-crafted features or pre-
processing. It improves on the state-of-the-art results while
being more than two orders of magnitude faster and more
parameter efficient.

1. Introduction
Normal vectors are local surface descriptors that are used

as an input for several computer vision tasks ranging from
surface reconstruction [27] to registration [39] and seg-
mentation [17]. For this reason, the task of surface nor-
mal estimation has been an important and well studied re-
search topic for a long time, with several methods dating
back up to 30 years [23]. Progress in the field, however,
has been plateauing only until recently when a number of
works has shown that improvements can be achieved with
the use of data-driven deep learning techniques [5, 7, 19],
as also shown in related fields like point cloud denoising
[42] or finding correspondences on meshes and point clouds
[10, 14, 32, 35]. Deep learning methods are known to often
achieve better results compared to data-independent meth-
ods. However, they have downsides in terms of robustness
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Figure 1: Simplified overview of the proposed method for
deep iterative surface normal estimation. The figure shows
the process for a subset of three points. (a) Surfaces are fit-
ted by optimizing weighted least squares. (b) A graph neu-
ral network infers kernel parameters and local orientation
from intermediate pair-wise point descriptors. (c) A train-
able, adaptive kernel refines the weights for the next step of
the least squares optimization.

to small input changes, adversarial attacks, interpretability,
and sometimes also computational efficiency. Also, they do
not make use of often well-known instrinsic problem struc-
ture, which leads to the necessity of having a large amount
of training data and model parameters to learn that structure
on their own.

It is well-known that surface normal estimation can be
formulated as a least-squares optimization problem. A way
to utilize this problem-specific knowledge with deep learn-
ing is to take an iteratively reweighting least squares (IRLS)
scheme [22] for robust model fitting and modify it using
deep data-dependent weighting, as it has been done recently
(with or without iterations) for other tasks [25, 43, 44, 46].
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It is a promising candidate to combine robustness, inter-
pretability and efficiency with the data prior of deep neural
networks (DNNs). From a deep learning perspective, the
approach imposes a strong bias on the architecture, heavily
constraining the space of solutions to those which are better
suited for the given problem.

Contribution In this work, we present such a trainable re-
weighting procedure for input graphs with a large number
of weighted least square problems and use it to design a fast
and accurate algorithm for surface normal estimation on un-
structured point clouds (c.f. Figure 1). The method consists
of a light-weight graph neural network (GNN), which pa-
rameterizes a local quaternion transformer and a deep ker-
nel function to iteratively re-weight graph edges in a large-
scale point neighborhood graph. We show that the resulting
algorithm

• reaches state-of-the-art performance in surface normal
estimation on unstructured point clouds,

• is more than two orders of magnitude faster and
more parameter efficient than related deep learning ap-
proaches, and

• is robust to noise and point density variation, while be-
ing equivariant and able to preserve sharp features.

2. Related work

Traditional methods for surface normal estimation make
use of plane fitting approaches like unweighted principal
component analysis (PCA) [23] and singular value decom-
position (SVD) (c.f. [28] for an overview). The perfor-
mance of these approaches usually hinges upon the often
cumbersome selection of data-specific hyper-parameters,
such as point neighborhood sizes, and it is sensitive to
noise, outliers and density variations. Because of this, sev-
eral heuristics have been proposed to ease such selection,
e.g. those for finding a neighborhood size for plane fit-
ting [34]. Another limitation of plane fitting methods is
that they tend to smoothen sharp details, in fact they can
be seen as isotropic low-pass filters. In order to preserve
sharp features methods that extract normal vectors from es-
timated Voronoi cells have been proposed [2, 33] and com-
bined with PCA [1]. Alternative approaches include edge-
aware sampling [24] or normal vector estimation in Hough
space [6]. In addition, several methods arise from more
complex surface reconstruction techniques, e.g. moving
least squares (MLS) [30], spherical fitting [18], jet fitting [9]
and multi-scale kernel methods [3].

Deep learning methods. Deep learning based approaches
also found their way into surface normal estimation with

the recent success of deep learning in a wide range of do-
mains. These approaches can be divided into two groups,
depending on the actual type of input data they use. The
first group aims at normal estimation from single images
[4, 12, 15, 29, 31, 41, 45] and has received a lot of interest
over the last few years due to the well understood properties
of CNNs for grid-structured data.

The second line of research directly uses unstructured
point clouds and emerged only very recently, partially due
to the advent of graph neural networks and geometric deep
learning [8]. Boulch et al. [7] proposed to use a CNN on
Hough transformed point clouds in order to find surface
planes of the point cloud in Hough space. Based on the re-
cently introduced point processing network, PointNet [40],
Guerrero et al. [19] proposed a deep multi-scale architecture
for surface normal estimation. Later, Ben-Shabat et al. [5]
improved on those results using 3D point cloud fisher vec-
tors as input features and a three-dimensional CNN archi-
tecture consisting of multiple expert networks.

3. Problem and background
Let S be a manifold in R3, P = {p0, ...,pm} a finite set

of sampled and possibly distorted points from that manifold
and N̂ = {n̂0, ..., n̂m} the tangent plane normal vectors at
sample points pi. Surface normal estimation for the point
cloud P can be described as the problem of estimating a set
of normal vectors N = {n0, ...,nm} given P , whose direc-
tion match those of the actual surface normals n̂i as close
as possible. We consider the problem of unoriented normal
estimation, determining the normal vectors up to a sign flip.
Estimating the correct sign can be done in a post-processing
step, depending on the task at hand, and is explicitly tackled
by several works [37, 25, 47].

A standard approach to determine unoriented surface
normals is fitting planes to the local neighborhood of every
point pi [30]. Given a radius r or a neighborhood size k, we
model the input as a nearest neighbor graph G = (P, E),
where we have a directed edge (i, j) ∈ E if and only if
||pj − pj ||2 < r or if pj is one of the k nearest neighbors
of pi, respectively. LetN (i) denote the local neighborhood
of pi, with ki ≡ |N (i)|, containing all pj with (i, j) ∈ E .
Furthermore, let P(i) ∈ Rki×3 be the matrix of centered
coordinates of the points from this neighborhood, that is

P(i)j = p>j −
1

ki

∑
m∈N (i)

p>m, pj ∈ N (i). (1)

Fitting a plane to this neighborhood is then described as
finding the least squares solution of a homogeneous system
of linear equations:

n∗i = arg min
n:|n|=1

||P(i)n||22 = arg min
n:|n|=1

∑
j∈N (i)

||P(i)j · n||2

(2)



The simple plane fitting of Eq. 2 is not robust and does not
result in high-quality normal vectors: It produces accurate
results only if there are no outliers in the data, which is
never the case in practice. Additionally, this approach elim-
inates sharp details because it acts as a low-pass filter on
the point cloud. Even when an isotropic radial kernel func-
tion θ(||P(i)||) is used to weight points according to their
distance to the local mean, fine details cannot be preserved.

Both problems can be resolved through integrating
weighting functions into Eq. 2. Sharp features can be pre-
served with an anisotropic kernel that infers weights of
point pairs based on their relative positions, i.e.:

n∗i = arg min
n:|n|=1

∑
j∈N (i)

ψ(pj − pi) · ||P(i)j · n||2 (3)

where ψ(·) is an anisotropic kernel, considering the full
Cartesian relationship between neighboring points, instead
of only their distance. However, an anisotrop kernel is no
longer rotation invariant, so that equivariance of output nor-
mals needs to be ensured additionally. Robustness to out-
liers can be achieved by another kernel that weights points
according to an inlier score si,j . More specifically, Eq. 2 is
changed to

n∗i = arg min
n:|n|=1

∑
j∈N (i)

si,j · ||P(i)j · n||2, (4)

where si,j weights outliers with a low and inliers with a
high score. However, in order to infer information about the
outlier status of points an initial model estimation is nec-
essary. A standard solution to this circular dependency is
to formulate the problem as a sequence of weighted least-
squares problems [22, 43]. Given the residuals rl of the
least squares solution from iteration l, the solution for iter-
ation l + 1 is computed as

nl+1
i = arg min

n:|n|=1

∑
j∈N (i)

s(rli,j) · ||P(i)j · n||2. (5)

That is, the inlier score and the estimated model are refined
in an alternating fashion.

4. Deep iterative surface normal estimation
In this section we present our method, which com-

bines the described properties of robustness, anisotropy and
equivariance with the deep learning property of adaptation
to large data set statistics. In contrast to existing deep learn-
ing methods [5, 19], we do not directly regress normal vec-
tors from point features but weights for a least-squares opti-
mization step, utilizing the problem specific knowledge out-
lined above.

The core of the algorithm is a trainable kernel function
ψ : R3 × Rd → R, which computes weights as

wi,j = ψ(Ri(pj − pi), θi), (6)

Algorithm 1 Differentiable iterative normal estimation

Input:
P: Point cloud
L: Number of iterations
k or r: Neighborhood size (num. neighbors or radius)
Output:
N: Normal vector estimations
——————————————————————–
(P, E)← Neighborhood graph from P and k / r
C← CovMatrices(P, E)
U,Σ← ParallelEig(C)
N0 ← Extract Solutions from U
for l ∈ {1, ..., L} do

(Θ,Q)← GNN(P, E ,Nl−1)
R← QuatsToMats(Q)
W← ApplyKernel ψ(R,P,Θ, E)
C←WeightedCovMatrices(P,W, E)
U,Σ← ParallelEig(C)
Nl ← Extract Solutions from U

end for
return NL

where θ are kernel parameters and R is a rotation matrix.
The kernel is shared by all local neighborhoods of the point
graph while θ and R are individual for each node. Because
there is no apriori information about the structure of the in-
put data, a reasonable approach is to model ψ as an MLP
and to find kernel parameters through supervised learning
from data. To this end, parameters θ and poses R for each
neighborhood are jointly regressed by a graph neural net-
work on the point neighborhood graph. Then, the kernel
function ψ regresses anisotropic, equivariant weights wi,j

for each edge in the graph, which are used to find the nor-
mal vectors using traditional weighted least-squares opti-
mization

ni = arg min
n:|n|=1

∑
j∈N (i)

softmax
j∈N (i)

(wi,j)||P(i)j · n||2, (7)

in parallel for all i ∈ P . Similar to iterative re-weighting
least squares (c.f. Eq. 5), we apply the method in an iterative
fashion to achieve robustness and provide the residuals of
the previous solution as input to the graph neural network.

The core algorithm is formulated as pseudo code in Al-
gorithm 1. The initial weighting of the points in a neighbor-
hood is chosen to be uniform, which results in unweighted
least-squares plane fitting in the initial iteration. In the
following, we present the graph neural network, the lo-
cal quaternion rotation and our differentiable least square
solver in more detail.



4.1. GNN for parameterization and rotation

For regressing parameters θ and rotations R for the
whole point cloud, graph neural networks [13, 20] are a
natural fit because the network must be invariant to the or-
dering of the points in a neighborhood and it must be able
to allow weight sharing over neighborhoods with varying
cardinality.

Our graph neural network architecture consists of a
neighborhood aggregation procedure, which is applied three
consecutive times. Given MLPs h and γ, the neighborhood
aggregation scheme, similar to that of PointNet [40] and to
general message passing graph neural network frameworks
[20, 36], is given by message function

fe(i, j) = h
(
f(i) |di,j |prf(i, j)

)
, (8)

and node update function

f(i) = γ
( 1

|N (i)|
∑

j∈N (i)

fe(i, j)
)

, (9)

with | denoting feature concatenation. Using this scheme,
we alternate between computing new edge features fe(i, j)
and node features f(i). In addition to the Cartesian rela-
tion vector di,j = (pj − pi), pair-wise residual features, a
modified version of Point Pair Features (PPF) [10, 11], are
provided as input:

prf(i, j) = (|ni ·di,j |, |nj ·di,j |, |ni ·nj |, ||di,j ||22). (10)

They are computed directly from the last set of least-squares
solutions and contain the residuals as point-plane distances
|ni · di,j |.

After applying the message passing scheme, the output
node feature matrix F ∈ RN×(d+4) is interpreted as a tuple
(Θ ∈ RN×d,Q ∈ RN×4), containing kernel and rotation
parameters for all nodes. We use the row-normalized Q
as unit quaternions to efficiently parameterize the rotation
group SO(3). We found that using a rotation matrix instead
of an arbitrary 3 × 3 matrix (as in the Spatial Transformer
Network [26]) heavily improves training stability, as also
observed by Guerrero et al. [19]. By applying a custom,
differentiable map from quaternion space to the space of
rotation matrices we efficiently compute the local rotation
matrices R for all nodes in parallel.

All in all, the graph neural network is permutation invari-
ant, can be efficiently applied in parallel on varying neigh-
borhood sizes, and is a local operator. Locality is an ad-
vantage which allows the algorithm to be applied on partial
point clouds and scans, without relying on global features
or semantics.

4.2. Parallel differentiable least-squares

In every iteration of the presented algorithm, the plane
fitting problem of Eq. 7 needs to be solved. A standard ap-
proach is to utilize the Singular Value Decomposition of the

weighted matrix diag(
√

wl
i)P(i): Let UΣVT be its de-

composition, then the column vector of V corresponding
to the smallest singular value is the optimal solution for the
given least squares problem [21, 43]. However, n SVDs (for
potentially varying matrix sizes) need to be solved in our
scenario, one for every neighborhood, which makes this ap-
proach prohibitive. A much more efficient approach in this
case is to consider the eigendecomposition of the weighted
3×3 covariance matrix C(i) = P(i)>diag(wl

i)P(i) which
has the columns of V as its eigenvectors [21]. The solution
for Eq. 7 is then the eigenvector associated with the smallest
eigenvalue. The computational complexity for the eigende-
composition of this 3× 3 matrix is O(1) and hence for one
overall iteration O(n).

Our algorithm is trained end-to-end by minimizing the
distance between ground truth normals and the least squares
solution, requiring backpropagation through the eigende-
composition. We follow the work of Giles [16]: Given par-
tial derivatives ∂L/∂U and ∂L/∂Σ for eigenvectors and
eigenvalues, respectively, we compute the partial deriva-
tives for a real symmetric 3× 3 covariance matrix C as

∂L

∂C
= U

(
(
∂L

∂Σ
)diag + F ◦U>

∂L

∂U

)
U>, (11)

where Fi,j = (λj − λi)−1 contains inverse eigenvalue dif-
ferences. We implemented forward and backward steps for
eigendecomposition of a large number of symmetric 3 × 3
matrices, where we parallelize over graph nodes, leading to
anO(1) implementation (usingO(n) processors) of parallel
least squares solvers.

Handling numerical instability. Backpropagation
through the eigendecomposition can lead to numerical
instabilities due to at least two reasons: 1) Low-rank input
matrices with two or more zero eigenvalues. 2) Exploding
gradients when two eigenvalues are very close to each other
and values of F go to infinity. We apply two tricks to avoid
these problems. First, a small amount of noise is added to
the diagonal elements of all covariance matrices, making
them full-rank. Second, gradients are clipped after the
backward step on very large values, to tackle the cases of
nearly equal eigenvalues that lead to exploding gradients.

4.3. Training

Training is performed by minimizing the Euclidean dis-
tance between estimated normals N and ground truth nor-
mals N̂, averaged over all normal vectors in the training set:

L(N̂,N) =
1

n

n∑
i=1

min(||n̂i − ni||2, ||n̂i + ni||2), (12)

where the minimum of the distances to the flipped or non-
flipped ground truth vectors is used. While we also experi-



Ours (k = 64, L = 4) Nesti-Net [5] PCPNet [19] HoughCNN [7] PCA Jet [9]

No noise 6.72 6.99 9.68 10.23 12.29 12.23
Noise (σ = 0.00125) 9.95 10.11 11.46 11.62 12.87 12.84
Noise (σ = 0.006) 17.18 17.63 18.26 22.66 18.38 18.33
Noise (σ = 0.012) 21.96 22.28 22.8 33.39 27.5 27.68
Varying Density (Stripes) 7.73 8.47 11.74 12.47 13.66 13.39
Varying Density (Gradients) 7.51 9.00 13.42 11.02 12.81 13.13

Average 11.84 12.41 14.56 16.9 16.25 16.29

Table 1: Results for unoriented normal estimation. Shown are normal estimation errors in angle RMSE. For PCA and Jet,
optimal neighborhood size for average error is chosen. For our approach, we display results for a balanced neighborhood size
k = 64, which improves on the state of the art for all noise levels. Results for different k are shown in Table 2.

mented with different angular losses, we found that the Eu-
clidean distance loss still provides the best result and the
most stable training. A loss is computed after each least
squares step and the network is trained iteratively by per-
forming a gradient descent step after each iteration of the
algorithm. This fights vanishing gradients that occur due to
the normalization of vectors in quaternion and eigenvector
computations. The weights of our network are shared over
iterations, allowing generalization to further iterations.

5. Experiments

Experiments were conducted to compare the proposed
Differentiable Iterative Surface Normal Estimation with
state-of-the-art methods both quantitatively, measuring nor-
mal estimation accuracy, and qualitatively, on a Poisson re-
construction and on a transfer learning task. Section 5.1
introduces the dataset used to train our model whereas Sec-
tion 5.2 details the architecture and the protocol followed in
our experiments. Then, qualitative (Section 5.3) and quan-
titative (Section G) results are presented and an analysis of
complexity and execution time (Section 5.4) is given.

5.1. PCPNet dataset

Our method is trained and validated quantitatively on the
PCPNet dataset as provided by Guerrero et al. [19]. It
consists of a mixture of high-resolution scans, point clouds
sampled from handmade mesh surfaces and differentiable
surfaces. Each point cloud consists of 100k points. We re-
produce the experimental setup of [5, 19], training on the
provided split containing 32 point clouds under different
levels of noise. The test set consists of six categories, con-
taining four sets with different levels of noise (no noise,
σ = 0.00125, σ = 0.0065 and σ = 0.012) and two sets
with different sampling density (striped pattern and gradi-
ent pattern). We evaluate unoriented normal estimation,
same as the related approaches. The Root Mean Squared
Error (RMSE) on the provided 5k points subset is used as
performance metric following the protocol of related work,
where the RMSE is first computed for each test point cloud

before the results are averaged over all point clouds in one
category. Model selection is performed using the provided
validation set.

5.2. Experimental setup and architecture

The presented graph neural network was implemented
using the Pytorch Geometric library [13]. The neural net-
works h, γ and ψ each consist of two linear layers, with
ReLU non-linearity. A detailed description of the archi-
tecture is presented in the supplemental materials. During
training, output weights from the kernel are randomly set to
zero with probability of 0.25.

It should be noted that despite inheriting the neighbor-
hood size parameter from traditional PCA, it is possible for
a network trained on a specific k to be applied for other k
as well. This is because all networks can be shared across
an arbitrary number of points and the softmax function nor-
malizes weights for neighborhoods of varying sizes. We
observed that generalization across different k only leads to
a very small increase in average error. However, to fairly
evaluate our method for different k, a network is trained
for each k ∈ {32, 48, 64, 96, 128}. Trained consists of 300
epochs using the RMSProp optimization method. All re-
ported test results are given after 4 re-weighting iterations
of our algorithm. Iterating longer does not show significant
improvements. Quantitative results over iterations, results
for extrapolation over iterations and generalization between
different k are presented in the supplemental materials. For
further realization details, we refer to our implementation,
which is available online1.

5.3. Quantitative Evaluation

RMSE results for the PCPNet test set of our approach
(with k = 64) and related works are shown in Table 1.
We improve on the state of the art on all noise levels and
varying densities. While the improvement is only small,
it should be noted that we reach it while being orders of

1https://github.com/nnaisense/
deep-iterative-surface-normal-estimation

https://github.com/nnaisense/deep-iterative-surface-normal-estimation
https://github.com/nnaisense/deep-iterative-surface-normal-estimation


Ours L = 4 PCA

Neighborhood size k 32 48 64 96 128 32 48 64 96 128

No noise 6.09 6.63 6.72 6.82 7.35 9.10 9.94 10.68 11.93 12.54
Noise (σ = 0.00125) 10.22 9.63 9.95 10.45 9.64 11.22 11.56 12.08 12.71 12.97
Noise (σ = 0.006) 18.17 17.36 17.18 17.03 16.90 28.41 23.00 20.68 18.81 18.12
Noise (σ = 0.012) 25.17 22.40 21.96 21.80 22.13 45.35 38.48 33.67 28.81 26.67
Varying Density (Stripes) 7.22 7.63 7.73 7.87 8.67 10.48 11.40 12.07 13.18 14.07
Varying Density (Gradients) 6.84 7.19 7.51 7.69 8.49 9.96 10.74 11.35 12.36 13.21

Average 12.28 11.81 11.84 11.94 12.20 19.09 17.52 16.75 16.30 16.26

Table 2: Comparison of unoriented normal estimation RMSE between the proposed method and PCA for different neigh-
borhood sizes k. It can be seen that our method consistently provides lower errors while being significantly more robust to
changes of that parameter, compared to PCA.
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Figure 2: Comparison for varying angle error threshold.
For error threshholds on the x-axis, the y-axis shows the
percentage of normals which have an error lower than that
threshhold. Our method and PCA use neighborhood size
k = 64. For low noise settings and varying density, our
method succeeds in recovering sharp features, as shown by
the higher accuracies for low angle threshholds.

magnitude faster and more parameter efficient (c.f. Sec-
tion 5.4, which is of importance for many applications in
resource constraint environments. For the non deep learn-
ing approaches, PCA and Jet, results for medium neighbor-
hood sizes are displayed. In addition, results for different
k are provided in Table 2 and compared to errors obtained
by PCA with the same respective neighborhood size. Our
method performs stronger than the PCA baseline in all sce-
narios. As expected, varying k leads to a behavior similar
to that of PCA, with large k’s performing better on more
noisy data. However, it can be observed that our approach
is more robust to changes of k: Even for small neighbor-

hood sizes, high noise is handled significantly better than
by PCA and large neighborhoods still produce satisfactory
results for low noise data. It should be noted that for all
evaluated k we improve on the state of the art w.r.t. aver-
age error. An evaluation for smaller k down to k = 2 is
provided in the supplemental materials.

While the RMSE error metric is well suited for a general
comparison, it is not a good proxy to estimate the ability
of recovering sharp features since it does not take into ac-
count the error distribution over angles. Therefore, as an
additional metric, Figure 2 presents the percentage of an-
gle errors falling below different angle thresholds. The re-
sults confirm that our approach is better at preserving details
and sharp edges, especially for low noise point clouds and
varying density, where it outperforms other approaches. For
higher noise, results similar to Nesti-Net are achieved.

5.4. Efficiency

Our model is small, consisting of only 7981 trainable pa-
rameters, shared over iterations and spatial locations. On a
single Nvidia Titan Xp, a point cloud with 100k points is
processed in 5.67 seconds (0.0567 ms per point). A large
part of this is the kd-tree used to compute the nearest neigh-
bor graph, which takes 2.1 seconds of the 5.67 seconds. It
is run on the CPU and could be further sped-up by utilizing
GPUs.

Ours Nesti-Net [5] PCPNet [19]

Num. parameters 7981 179M 22M
Exec. time, 100k p. 3.57 s 1350 s 470 s
Relative exec. time 1× 378× 131×

Table 3: Comparison of efficiency between the approaches
using deep learning. We list number of model parameters
as well as average execution times for estimating normals
on a point cloud with 100k points.

In Table 3 we compare our approach against the re-
lated deep learning approaches Nesti-Net and PCPNet. Our
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Figure 4: Local behaviour of our method over several iterations for a sharp edge (a) and a noisy surface (b). The partial point
clouds where sampled from the PCPNet test dataset. The colors in the first rows show the weights from the kernel network
for one normal in the neighborhood while the colors in the second row show the angle error of all neighborhood normals.

approach is orders of magnitude (378× and 131×) faster
than the related approaches. The comparison was made
as fair as possible by excluding nearest neighbor queries
(note that this favors the other approaches since they need
larger neighborhoods) and the original implementations.
The speedup of our method can be contributed to the much
smaller network size and the parallel design of the GNN and
least-squares optimization steps.

5.5. Qualitative Evaluation

This section visually presents surface normal errors for
various elements of the PCPNet test set in Figure 3 and
compares them against results from the PCA baseline and
related deep learning approaches. It can be seen that the
biggest improvements are obtained for low noise scenarios
and varying density, where our method is able to preserve
sharp features of objects better than the other methods. In
general it can be observed that our approach tends to pro-
vide sharp, discriminative normals for points on edges in-

stead of smooth averages. In rare cases, this can lead to a
false assignment of points to planes, as we can see in the
example in column 8. It can be observed that, in contrast
to Nesti-Net, our approach behaves equivariant to input ro-
tation as is seen clearly on the diagonal edge of the box
example in column 3. Sharp edges are kept also in uncom-
mon rotations, which we can attribute to our local rotational
transformer. Results for more examples are displayed in the
supplemental material.

Interpretability. In order to interprete the results of our
method, Figure 4 shows a detailed view of local neighbor-
hoods over several iterations of our algorithm. An example
for a sharp edge is shown in Figure 4a and a high noise sur-
face in Figure 4b. Both sets of points were sampled from the
real test data. For the sharp edge, the algorithm initially fits
a plane with uniform weights, leading to smoothed normals.
Over the iterations, high weights concentrate on the more
plausible plane, leading to recovering of the sharp edge. In
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Figure 5: Selected results after applying Poisson surface re-
construction using the estimated normal vectors. In most
cases, differences between the methods are very small. Ex-
amples 2 and 3 show reconstructions from point clouds with
varying density, which show the largest differences.

the noisy example, we can see that outliers are iteratively
receiving lower weights, leading to more stable estimates.

Surface reconstruction. To further evaluate the quality
of the produced normals when used as input to other com-
puter vision pipelines, Figure 5 shows the results for Pois-
son surface reconstruction. Since the methods in this com-
parison all perform unoriented normal estimation (Guerrero
et al. [19] evaluates both, unoriented and oriented, where we
chose the unoriented version for a fair comparison), we de-
termine the signs of the output normals from all four meth-
ods using the ground truth normals. Most of the recon-
structions show only small differences, with our approach
and Nesti-Net retaining slightly more details than the oth-
ers. Significant differences can be observed for point clouds
with varying density, displayed in rows 2 and 3. Here, our
approach successfully retains the original structure of the
object while still providing sharp edges.

Transfer to NYU depth dataset. In order to show gen-
erality of our approach, our models trained on the PCPNet
dataset are validated on the NYU depth v2 dataset [38], a
common benchmark dataset in the field of estimating nor-
mals from single images. It contains 1449 aligned and pre-
processed RGBD frames, which are transformed to a point
cloud before applying our method. After performing un-
oriented estimation, the normals are flipped towards the
camera position. Evaluation is done qualitatively, since the
dataset does not contain ground truth normal vectors. Re-
sults for three different neighborhood sizes in comparison
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k = 32 k = 64 k = 128

Figure 6: Examples for normal estimation on scanned data
from the NYU depth v2 dataset. Colors encode the orien-
tation of normals. Our model generalizes to this dataset
while being able to retain more details and sharper edges
than PCA. However, scanning artifacts are also kept and
visible. Best viewed in the digital version of the paper.

to PCA are shown in Figure 6. Our approach behaves as ex-
pected, as it is able to infer plausible normals for the given
scenes. For all k, our approach is able to preserve sharp fea-
tures while PCA produces very smooth results. However,
this also leads to the sharp extraction of scanning artifacts,
which can be seen on the walls of the scanned room.

6. Conclusion and future work

We presented a novel method for deep surface normal
estimation on unstructured point clouds, consisting of par-
allel, differentiable least-squares optimization and deep re-
weighting. In each iterations, the weights are computed
using a kernel function that is individually parameterized
and rotated for each neighborhood by a task-specific graph
neural network. The algorithm is much more efficient than
previous deep learning methods, reaches state-of-the-art ac-
curacy, and has favorable properties like equivariance and
robustness to noise. For future work, investigating the pos-
sibility of utilizing deep data priors to parameterize least-
squares problems holds large potential. We suspect that in-
troducing data-dependency to other traditional methods can
lead to progress in other fields of research, by reducing com-
mon disadvantages of pure deep learning approaches. On
the theoretical side, it is interesting to dive deeper into con-
vergence properties of IRLS with deep re-weighting.
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Supplemental Materials

A. Overview
The supplemental materials contain details about the

graph neural network in Section B, information about the
implementation in Section C, a short discussion about the
spatial transformer in D, and an additional analysis of ac-
curacy over re-weighting iterations in Section E. Further,
we show results for transferring models between different
neighborhood sizes in Section F and qualitative results for
the whole PCPNet test set in Section G.

B. Architecture Details
The graph neural network for the deep kernel parameter-

ization follows a general message passing scheme [13] with
edge update function

fe(i, j) = h
(
f(i) |di,j |prf(i, j)

)
(13)

and node update function

f(i) = γ
( 1

|N (i)|
∑

j∈N (i)

fe(i, j)
)

, (14)

consisting of 6 MLPs, hi and γi for i ∈ {1, 2, 3}. To-
gether with the kernel MLP ψ, all functions are detailed in
Table 4 The hi and ψ networks are shared over all edges
in the neighborhood graph while the γi are shared over all
points. Additionally, all MLPs are shared over the iterations
of the algorithm. Each MLP consists of two linear layers,
seperated by a ReLU non-linearity. Layer sizes are given in
Table 4. All in all, the networks contain 7981 parameters
and fulfill the following properties.



Network Architecture

h1 L(32), ReLU , L(16)
γ1 L(32), ReLU , L(8)
h2 L(32), ReLU , L(16)
γ2 L(32), ReLU , L(8)
h3 L(32), ReLU , L(16)
γ3 L(32), ReLU , L(12)
ψ L(64), ReLU , L(1)

Table 4: Details of the used graph neural network for iter-
ative re-weighting. L(x) stands for a fully-connected layer
with x output neurons.

Permutation Invariance Neighborhood aggregation is
performed using an average operator, which is invariant re-
garding the order of points. Since there are no other func-
tions over sets of points, the resulting network is permuta-
tion invariant. We refer to [40] for further discussion. It
should be noted that PointNet can also be expressed in the
same message passing scheme and is permutation invariant
for the same reasons.

Varying neighborhood sizes For the cases in which we
decide to use a radius graph instead of a k-nn graph, the net-
work allows differently sized neighborhoods in one graph,
since all parameters are shared over edge or nodes and the
only operation over the whole neighborhood, the average, is
agnostic to the neighborhood size.

Locality Due to using only local operators, the presented
algorithm can be applied on partial point clouds, which is
of importance for many practical applications.

C. Implementation Details
The implementation of the proposed algorithm is based

on the Pytorch Geometric library [13] and uses the provided
scheme consisting of scattering and gathering between node
and edge feature space. Therefore, varying neighborhood
sizes (e.g. varying node degree) can still be handled in par-
allel on the GPU by parallelization in graph edge space.

For parallel eigendecomposition of a large number of
symmetric 3 × 3 matrices and for the parallel quaternion
to rotation matrix map, we provide our own Pytorch exten-
sions which is available online. We provide efficient for-
ward and backward steps on GPU and CPU.

D. Rotational Spatial Transformer
Our spatial transformer learns to bring the point sets in

canonical orientation, which leads to equivariant behaviour,
as our results show. Directly parameterizing 3 × 3 matri-
ces for the spatial transformer would lead to arbitrary affine

transformations which can easily collapse or diverge during
training. Thus, parameterizing the rotation group SO(3) is
the more fitting choice for the given task. Unit quaternions
are a good representation choice because they cover SO(3)
(twice) without any discontinuities, as exist in e.g. Eu-
ler angles or axis-angle representations. Discontinuities in
the SO(3) representation would force the network to some-
times predict very different values for SO(3) elements that
lie next to each other on the Lie group manifold, which can
lead to unstable gradients.

E. Behaviour over iterations

The algorithm is trained for L = 8 (performing 8 iter-
ations of re-weighting), where we compute a loss and per-
form an optimization step after each iteration. It produces
normal vector estimations after each iteration, which can be
analyzed quantitatively. The RMSE results for the PCPNet
test set over algorithm iterations are shown in Figure 7. It
can be seen that after iteration 4, further iterations do not
lead to significant improvements. Also, the algorithm be-
haves reasonable stable, not diverging immediately after we
pass the iterations for which the network was trained. How-
ever, we observe a small drift in favor of low-noise datasets
over the iterations. Errors for the test sets with no noise or
variable density still decrease further while errors for data
with higher noise levels slightly increase. Meanwhile, the
average error stays nearly constant.

F. Transfer between neighborhood sizes

As stated in the main paper, the proposed algorithm
generalizes reasonably well between neighborhood sizes,
meaning that a model trained using neighborhood size ktrain

can be applied using a different neighborhood size ktest

while producing good results. For verification, we report
RSME errors for different combinations of ktrain and ktest

in Table 5. It can be seen that if the difference in neigh-
borhood size is not too big, transferred models often only
perform slightly worse than models trained directly for the
appropriate k. However, transferring over very large differ-
ence like from 128 to 32 or the other way around, leads to
a significant decrease in performance. The model trained
on the balanced k = 64 performs very well on all other
neighborhood sizes.

Additionally, Table 6 provides results for applying the
model on even smaller neighborhood sizes, to evaluate the
minimum k before the method breaks down. We found that
when using a ktrain <≈ 30, the training becomes unstable,
which is why we transfer the model from ktrain = 32 to
smaller ktest = 32. Results show that the algorithm provides
good results for noise-free data down to k = 4. For noisy
data, the approach breaks down quite fast when lowering k,
as expected: At least k = 24 is required to provide reliable
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Figure 7: Test errors (RMSE) over iterations of the proposed algorithm. Iteration 0 shows results for unweighted PCA only.
The network was trained on the training set for 8 iterations. For evaluation, we perform four additional iterations to evaluate
stability.

Trained on ktrain = 32 Trained on ktrain = 64 Trained on ktrain = 128

ktest 32 48 64 96 128 32 48 64 96 128 32 48 64 96 128

No noise 6.09 6.96 7.43 8.25 8.77 6.13 6.47 6.72 7.10 7.27 6.66 7.01 7.24 7.29 7.35
Noise (σ = 0.00125) 10.22 10.01 10.09 10.37 10.62 10.19 9.93 9.95 10.18 10.35 9.89 9.57 9.50 9.50 9.64
Noise (σ = 0.006) 18.17 17.44 17.22 17.08 17.05 18.28 17.43 17.18 17.01 16.94 20.98 18.40 17.63 17.07 16.90
Noise (σ = 0.012) 25.17 22.97 22.33 21.91 21.80 25.20 22.53 21.96 21.69 21.67 30.99 24.94 23.20 22.34 22.13
Density (Stripes) 7.22 7.92 8.51 9.43 9.90 7.21 7.55 7.73 8.16 8.34 7.80 8.14 8.37 8.61 8.67
Density (Gradients) 6.84 7.46 8.06 8.80 9.21 6.89 7.17 7.51 8.04 8.03 7.48 7.75 8.11 8.39 8.49

Average 12.28 12.12 12.27 12.64 12.89 12.31 11.85 11.84 12.00 12.10 13.97 12.63 12.34 12.20 12.20

Table 5: Results for transferring models between different neighborhood sizes k. Shown are RMSE values for models trained
with ktrain ∈ {32, 64, 128}, each tested with ktest ∈ {32, 48, 64, 96, 128}.

Trained on ktrain = 32

ktest 2 4 8 16 24 32

No noise 17.26 7.23 5.63 5.36 5.77 6.09
Noise (σ = 0.00125) 54.02 49.66 33.65 13.80 10.74 10.22
Noise (σ = 0.006) 61.08 60.91 55.32 28.17 19.78 18.17
Noise (σ = 0.012) 61.29 61.26 58.89 41.37 28.99 25.17
Density (Stripes) 19.50 8.14 6.53 6.36 6.71 7.22
Density (Gradients) 22.89 8.44 6.51 6.23 6.57 6.84

Average 39.34 32.59 27.75 16.88 13.09 12.28

Table 6: Results for transferring the model trained on
ktrain = 32 to even smaller ktest ∈ {2, 4, 8, 16, 24, 32} un-
til the method breaks down. Note that ktest = 2 means 2
neighbors, excluding point i, so there are still 3 points in
total for each neighborhood, avoiding underdefined plane
fitting problems.

results. For lower k, the results approach the accuracy of
random normals.

G. Further qualitative results
Last, we provide qualitative results for the whole PCP-

Net test set in Figure 8. For point clouds with varying den-
sity, the point size is reduced in order to better visualize
the densities. Similar to examples shown in the paper, we
can see that the method produces very sharp normal vectors,
which usually resemble the plane normal of one of the plau-
sible planes in the neighborhood. The abstract objects are
good examples to show equivariance, as all edges show sim-
ilar errors, independent of orientation. Sometimes, points
are assigned to a false plane, leading to high error normal
vectors. Compared to other approaches, we do not observe
heavy smoothing around edges.
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Figure 8: Qualitative results for all examples of the test set. Colors encode the RMSE in degree for each point. Best viewed
in the digital version.


